Isomorphisms of Direct Products of Finite Cyclic Groups
نویسندگان
چکیده
In this article, we formalize that every finite cyclic group is isomorphic to a direct product of finite cyclic groups which orders are relative prime. This theorem is closely related to the Chinese Remainder theorem ([18]) and is a useful lemma to prove the basis theorem for finite abelian groups and the fundamental theorem of finite abelian groups. Moreover, we formalize some facts about the product of a finite sequence of abelian groups.
منابع مشابه
Isomorphisms of Direct Products of Finite Commutative Groups
We have been working on the formalization of groups. In [1], we encoded some theorems concerning the product of cyclic groups. In this article, we present the generalized formalization of [1]. First, we show that every finite commutative group which order is composite number is isomorphic to a direct product of finite commutative groups which orders are relatively prime. Next, we describe finit...
متن کاملIsomorphisms of Direct Products of Finite Commutative Groups1
We have been working on the formalization of groups. In [1], we encoded some theorems concerning the product of cyclic groups. In this article, we present the generalized formalization of [1]. First, we show that every finite commutative group which order is composite number is isomorphic to a direct product of finite commutative groups which orders are relatively prime. Next, we describe finit...
متن کاملIsomorphisms of Direct Products of Cyclic Groups of Prime Power Order
In this paper we formalized some theorems concerning the cyclic groups of prime power order. We formalize that every commutative cyclic group of prime power order is isomorphic to a direct product of family of cyclic groups [1], [18]. Let G be a finite group. The functor Ordset(G) yielding a subset of N is defined by the term (Def. 1) the set of all ord(a) where a is an element of G. One can ch...
متن کاملA Simple Classification of Finite Groups of Order p2q2
Suppose G is a group of order p^2q^2 where p>q are prime numbers and suppose P and Q are Sylow p-subgroups and Sylow q-subgroups of G, respectively. In this paper, we show that up to isomorphism, there are four groups of order p^2q^2 when Q and P are cyclic, three groups when Q is a cyclic and P is an elementary ablian group, p^2+3p/2+7 groups when Q is an elementary ablian group an...
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Formalized Mathematics
دوره 20 شماره
صفحات -
تاریخ انتشار 2012